![](https://divisions-prod.s3.amazonaws.com/bbe/images/Putative-Bronner.max-250x250.jpg)
Induction and Gene Regulation of the Neural Crest
We study the signaling and transcriptional interactions that lead to neural crest formation both at the tissue and the molecular level. Currently, we are applying gain- and loss-of-function approaches coupled transcriptome, regulatory analysis and bioinformatics to interrogate the molecular interactions that comprise a neural crest gene regulatory network (NC-GRN). We are also examining the role of epigenetic modifications in early in neural crest development and how they influence the NC-GRN.
![](https://divisions-prod.s3.amazonaws.com/bbe/images/Zebrafish-Bronner.max-250x250.jpg)
Early Patterning of the Placodes
Ectodermal placodes give rise to cranial ganglia and sense organs (ear, nose, lens). We are studying the molecular basis underlying formation and specification of the ectodermal placodes, with emphasis on induction, lineage decisions and morphogenesis. The goal is to formulate the gene regulatory network responsible for formation of specific placodes. Currently, we are focusing on development of the otic and olfactory placodes.
![](https://divisions-prod.s3.amazonaws.com/bbe/images/Lamprey-Bronner.max-250x250.jpg)
Evolution of the Neural Crest and Placodes
The neural crest is a uniquely vertebrate innovation. We are cloning orthologues of neural crest and placode "marker genes" from a basal vertebrate (lamprey) and non-vertebrate chordate (amphioxus) as well as isolating regulatory regions for these markers. We are using loss-of-function approaches, transcriptome analysis and interspecific transplantation to dissect the basal NC-GRN and what may have driven evolution of jawed vertebrates.
![](https://divisions-prod.s3.amazonaws.com/bbe/images/Neural-Crest-Cells-Bronner.max-250x250.jpg)
Neural Crest Cell Emigration and Migration
Neural crest cells are among the most migratory cell type in vertebrate embryos. We are characterizing the machinery responsible for neural crest cell movement, the nature of the neural crest epithelial to mesenchymal transition to form a migratory cell type and the role of the migratory environment in influencing migratory pathway choices. A variety of cell labeling techniques, including DiI-labeling, microsurgical grafts and confocal time-lapse microscopy, are used to follow the pathways of neural crest migration in in a number of vertebrate species.
![](https://divisions-prod.s3.amazonaws.com/bbe/images/Melanoma-Cells-Bronner.max-250x250.png)
Neural Crest and Cancer
Neural crest cells are a highly multipotent cell type that gives rise to diverse derivatives including melanocytes, craniofacial skeleton and peripheral ganglia. Many of the cell types are prone to metastasis in the adult, forming melanomas, neuroblastomas, and other types of metastatic cancer. We are interested in comparing the mechanisms of neural crest invasive behavior with those causing adult neural crest derivatives to return to a migratory and invasive state.
Publications
- Dong, Zhenyu;Mahler, Simon et al. (2024) Non-invasive laser speckle contrast imaging (LSCI) of extra-embryonic blood vessels in intact avian eggs at early developmental stagesBiomedical Optics Express
- Tseropoulos, Georgios;Mehrotra, Pihu et al. (2024) Immobilized NRG1 Accelerates Neural Crest like Cell Differentiation Toward Functional Schwann Cells Through Sustained Erk1/2 Activation and YAP/TAZ Nuclear TranslocationAdvanced Science
- Desingu Rajan, Ayyappa Raja;Huang, Yuanyun et al. (2024) Generation of a zebrafish neurofibromatosis model via inducible knockout of nf2
- Edens, Brittany M.;Stundl, Jan et al. (2024) Neural crest origin of sympathetic neurons at the dawn of vertebratesNature
- Suzuki, Miyuki;Okumura, Akinori et al. (2024) Fgf10 mutant newts regenerate normal hindlimbs despite severe developmental defectsProceedings of the National Academy of Sciences
- Tan, Fayth Hui;Bronner, Marianne E. (2024) Regenerative loss in the animal kingdom as viewed from the mouse digit tip and heartDevelopmental Biology
- Bedois, Alice M. H.;Parker, Hugo J. et al. (2024) Sea lamprey enlightens the origin of the coupling of retinoic acid signaling to vertebrate hindbrain segmentationNature Communications
- Piacentino, Michael L.;Fasse, Aria J. et al. (2024) SMPD3 expression is spatially regulated in the developing embryo by SOXE factorsDevelopmental Biology
- Jacobs-Li, Jessica;Tang, Weiyi et al. (2023) Single-cell profiling coupled with lineage analysis reveals vagal and sacral neural crest contributions to the developing enteric nervous systemeLife
- Lamanna, Francesco;Hervas-Sotomayor, Francisca et al. (2023) A lamprey neural cell type atlas illuminates the origins of the vertebrate brainNature Ecology & Evolution